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Deformation mechanism maps may be constructed for either a constant grain size or a 
constant temperature. A simple method is described for constructing maps at constant 
temperature, and maps are presented for two representative oxides, a carbide, and three 
alkali halides. A method is also described for superimposing a set of similar deformation 
mechanism maps. 

1. Introduction 
Polycrystalline materials may deform by a number 
of different deformation mechanisms, and the 
dominant process under any selected testing con- 
ditions depends critically on external parameters, 
such as temperature and stress, and various struc- 
tural features, such as grain size and purity. For 
simple systems, such as pure metals, several of the 
deformation mechanisms are understood reason- 
ably well, and there is often good agreement 
between theoretical predictions and experimental 
results. 

Weertman [1,2] first suggested the possibility 
of using this information to construct a "creep 
diagram" (now generally referred to as a "defor- 
mation mechanism map") in which the normalized 
stress, a/G, is plotted as a function of the hom- 
ologous temperature, T/Tm, at a constant value 
of the specimen grain size, where o is the applied 
stress, G is the shear modulus, T is the absolute 
temperature, and Tm is the melting point of the 
material in degrees Kelvin. In the original form of 
this diagram, four different mechanisms were 
considered: high temperature (or Andrade) creep, 
low temperature (or logarithmic) creep, anelastic 
(or recoverable) creep, and Nabarro-Herring 
diffusional creep. By examining the form of the 
constitutive equations describing each of these 
four processes, and assuming that the mechanisms 
operated independently so that the strain-rates 
were additive, the diagram was then divided into 
four fields so that each mechanism was dominant 
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in one area of stress-temperature space. 
The original diagram described by Weertman 

[1,2] was only developed schematically, but the 
concept was of major significance since it provided 
the opportunity of presenting a compendium of 
mechanical information in a simple, useful, and 
highly visual form. As a result, much attention 
has been devoted recently to the development of 
deformation mechanism maps for specific materials. 

Although most of the published work in this 
area relates to metals, some maps are now available 
for ceramic materials. The purpose of this paper is, 
therefore, three-fold: (1) to briefly review the maps 
developed to date for non-metallic systems, (2) to 
outline a method of constructing a simple form of 
deformation mechanism map, and (3) to  present 
examples of maps for two representative oxides, 
a carbide, and three alkali halides. 

2. Types of deformation mechanism maps 
At the present time, there are two distinct types 
of deformation mechanism maps. The first type is 
of the form originally suggested by Weertman 
[1 ,2] ,  in which normalized stress is plotted against 
homologous temperature at constant grain size: 
the second type is of the form suggested by 
Mohamed and Langdon [3], in which normalized 
grain size is plotted against normalized stress at 
constant temperature. These two types are con- 
sidered separately. 
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2.1. Deformation mechanism maps at 
constant grain size 

Although developed predominantly for metals, 
maps of this type are now available for MgO [4, 
5], olivine [(Mgo.ssFeo.ls)2SiO4-(Mgo.gsFeo.os)2 
SiO4] [5, 6],  and UO2 [4, 7].  

An example is shown in Fig. 1 for polycrystal- 
line MgO having a grain size of 10#m, based on 
the work of Stocker and Ashby [5]. The tem- 
perature scale for this map extends from absolute 
zero to the melting point of MgO, and the scale of 
normalized shear stress, z/G, extends over eight 
orders of magnitude, from 10 -8 to 1, thereby 
including all stress-temperature conditions of 
interest in practical situations. The heavy lines on 
this map represent the boundaries between fields 
within which one specific deformation mechanism 
is dom~ant;  the lines, therefore, trace out the loci 
of points where the two adjacent deformation 
mechanisms have equal strain-rates. These lines 
meet at triple junctions where three deformation 
mechanisms are of equal importance. 

The upper line at rIG ~- 10 -1 represents the 
ideal strength of MgO, based on the theoretical 
shear strength. The region marked dislocation glide 
represents conditions under which deformation 

occurs by the conservative motion of dislocations 
by glide through the lattice. Diffusion-controlled 
creep processes are rate-controlling at values of 
r[G less than ~ 5 • 10 -3, and this area is divided 
into high temperature (H.T.) and low temperature 
(L.T.) creep in which the gliding dislocation is 
released from an obstacle by climb, with the 
dominant transport mechanism occurring either 
through the lattice (H.T.) or along the dislocation 
cores (L.T.), respectively, and stress-directed dif- 
fusional creep. The area marked diffusional creep 
is further divided according to whether the dif- 
fusional process occurs by extrinsic O 2- lattice 
diffusion (Nabarro-Herring creep, T/Tm > 0.42), 
extrinsic 0 2- grain-boundary diffusion (Coble 
creep, O.17<T/T m <0.42) ,  or intrinsic Mg 2+ 
grain-boundary diffusion (Coble creep, T/Tm < 
0.17). 

The thin lines superimposed on the fields in 
Fig. 1 are contours of constant steady-state strain- 
rate, for rates from 10 -2 to lO-l~ * By selec- 
ting values of riG and T/Tm, this map, therefore, 
indicates both the approximate steady-state strain- 
rate and the dominant creep process for poly- 
crystalline MgO having a grain size of lO#m. 

Fig. 1 also shows the location of experimental 
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Figure 1 Deformat ion  mechan i sm map  for MgO having a grain size of  10 ~m. 

*Maps may  also be const ructed having contours  o f  cons tant  relaxation t ime,  t r, defined as the t ime required to produce 
a creep strain of giG, so that t r = a/Gb where b is the steady-state creep rate [8]. 
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data for MgO of a comparable grain size (11.8/am) 
reported in an earlier creep investigation [9] ; these 
results, which fall entirely within the field for high 
temperature creep, are discussed in more detail in 

Section 2.2. 

2.2. Deformation mechanism maps at 
constant temperature 

2.2. 1. Constitutive equations for high 
temperature deformation 

By considering a constant temperature, a defor- 
mation mechanism map may be constructed by 
plotting normalized grain size, d/b, against normal- 
ized stress, o/G or r/G, where d is the grain size 
and b is the Burgers vector [3]. Since the tempera- 
ture is constant, this type of map may be regarded 
as a vertical section cut through a map at constant 
grain size (e.g. Fig. 1). 

In order to develop these maps for ceramic 
materials, it is first of all necessary to determine 
the relevant constitutive equations for the defor- 
mation processes which may be important at the 
temperature of  interest. At high temperatures, 
typically greater than ~ 0.4 Tra, and for normal- 
ized stresses of o/G less than ~ 10-2,t Fig. 1 
indicates that the dominant processes are high 
temperature creep and diffusional creep. 

The processes of diffusional creep are well 
developed theoretically, and it is reasonable to use 
the existing theoretical equations. 

When the diffusional path is through the lattice 
(Nabarro-Herring creep), the steady-state creep 
rate is given by [10, 11] 

B~aD1 
= -~kT  (1) 

where B is a constant, ~2 is the atomic volume, D1 
is the lattice diffusion coefficient, and k is 
Boltzmann's constant. The precise value of B 
depends on grain shape and toad distribution, but 
a review of experimental data obtained on metals 
tested in tension suggests that B " 4 0  [12], and 
this is consistent with a consideration of grain 
morphology in polycrystals [13]. Putting ~ = 0.7 
b 3, Equation 1 reduces to 

D,Cb__i_f ._[b l 
= 2 8  (2 )  

When the diffusional path is via the grain 
boundaries (CoNe creep), the steady-state creep 
rate is given by [14] 

= 150 aa~Dgb 
Trd3k T (3) 

where ~ is the effective width of the boundary for 
enhanced diffusivity, andDgb is the grain-boundary 
diffusion coefficient. Taking 5 = 2b,$ Equation 3 
reduces to 

6 8 DgbGb b 3 
~ -- 6. --k-T-- ( d )  (G)" (4) 

No single theory of high temperature creep 
is entirely satisfactory when an intragranular 
process is rate-controlling, but the constitutive 
equation may be derived directly from an analysis 
of  the available experimental data. For an intra- 
granular mechanism, the steady-state creep rate is 
independent of grain size and may be expressed as 

where D is the relevant diffusion coefficient, and 
A and n are constants. The values of these con- 
stants are, therefore, obtained by logarithmically 
plotting the normalized creep rate, ~kT/DGb, 
against the normalized stress, o/G. 

Fig. 2 shows published creep data for three 
materials, A1203[15], MgO [9], and UC [16]. 
These results were selected because the experi- 
ments are documented in detail, and the tests 
on each material were conducted in compression 
so that there are no problems associated with the 
interpretation of bending data. For each material, 
the diffusion coefficient was taken for lattice 
diffusion of the slower-moving ion, and the shear 
modulus at a selected absolute temperature, T, 
was estimated from the relationship 

a -- Go--  (~G)T (6) 

~'Owing to the rapid strain-rates involved at high temperatures, a value of o/G ~ 10 -2 represents an upper limit of 
interest for most practical and experimental conditions. 
~There is evidence that the value of ~ in many ceramic materials may be larger than 2b, due both to a space-charge 
effect and to impurity segregation at or in the vicinity of the boundaries. In the absence of definitive data on this 
point, it is usual to put 6 = 2b and to recognize that this may be regarded as a lower limit. A similar approximation 
was used in the construction of Fig. 1. 319 



TABLE I Values of D, G, and b for various ceramic materials 

G 

Material D(em2sec -~) Go(MNm -2) AG(MN m-2K -1) b(cm) 

References 

D G 

Al~O3 D~(O 2-) = 2.0 exp(--461 O00]RT)* 1.71 X l0 s 23.4 4.75 X 10-at 
MgO DI(O 2-) = 2.5 X 10 -6 exp(--261 O00/RT) 1.387 X 10t 26.2 2.98 X 10 -s 
UC D~fU 4+) = 7.5 X 10 -s exp(--339 O00[RT) 2.058 X 10 ~ 16.1 3.51 X 10 -8 
KC1 Dx(C1-) = 3.2 exp(--189 O00/RT) 1.225 X 104 6.57 4.45 X 10 -s 
LiF D~(F-) = 64 exp(--212 O00/RT) 5.52 X 104 33.2 2.85 X 10 -8 
NaC1 D~(CI-) = 212 X 10 ~ exp(--214 O00/RT) 1.79 X 104 9.6 3.99 X 10 -s 

[17] 
[191 
[211 
$ 

[25] 
$ 

[18] 
[201 
[221 
[241 
I241 
[24] 

*R = 8.31 J mol -I K -1. 
~'For slip on {0 0 0 1}<1 1 20> basal system. 
SValue of D~ estimated for the appropriate grain size from Laurent and B~nard [23]. 

where Go is the value o f  G obtained by  a linear 
extrapolat ion from high temperatures to absolute 
zero and AG is the variation in G per degree Kelvin. 
The values of  D, Go, AG, and b are summarized in 
the first three lines o f  Table I, where R is the gas 
constant  and the activation energies are in J mol - t .  
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Figure 2 Normalized creep rate, bkT/DGb, versus normal- 
ized stress, o/G, for A1203, MgO, and UC. 

As indicated in Fig. 2, the results for A12Oa and 
MgO are in excellent agreement, and the experi- 
mental  lines differ by only a factor of  two. This 
provides strong support  for the form of  Equation 
5 when it  is noted that  there are major differences 
between these two materials in bo th  testing tem- 
perature (1600, 1650 and 1700 ~ C for A1203, and 
1200~  for MgO) and grain size (65~m for 
A1203, and 11.8, 33 and 52/~m for MgO). The 
results for UC are about an order of  magnitude 
higher, and this may be due to uncertainties in the 
value Of Dl(U4§ 

The data in Fig. 2 indicate a stress exponent  of  
n ~ 3, so that  the constitutive equation for dis- 
location creep* in ceramic oxides and carbides may 
be expressed by the relationship 

= 3 ~ (7) 

where the value of  A ~ 3 is obtained from a best 
fit  to the results for A12Oa and MgO.t 

2.2.2. Method of  constructing a 
deformation mechanism map 

The method o f  constructing a deformat ion mech- 
anism map at constant temperature is i l lustrated 
in Fig. 3 for MgO at 1200 ~ C. In this map, the 
range o f  normalized grain size, d/b, is from 103 to 
108, corresponding to grain sizes from a minimum 
of  ~ 0.3/~m to a maximum of  ~ 3 cm, and the 
range of  normalized stress, o/G, is from 10 -7 to 
10 -2 . At  this temperature,  labora tory  experi- 
ments are generally conducted in the range of  
alGa" 10 -4 to 10 -3 but  structural applications 
are usually in the range o f  o/G ~ 10 -6 to 10 -4. 

The map is constructed using three constitutive 

*The term dislocation creep is used to designate the deformation mechanism at high stress levels when there is no 
dependence on grain size: the precise nature of this process is not known at the present time. 

"~In the construction of Fig. 1, Equation 5 was used with A = 11.6 and n = 3.3 [4, 5]. 
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Figure 3 Method of  construct ing a deformat ion  mechanism map,  illustrated for MgO at 1200 ~ C. 

relationships, given by Equation 7 for dislocation mation mechanisms have equal strain-rates. From 
creep, Equation 2 for Nabarro-Herring creep, Equations 2, 4 and 7, the value of the normalized 
and Equation 4 for Cable creep: the insert in Fig. 3 stress at this point is given by 
summarizes the values of the dimensionless con- 
stant A in the Nabarro-Herring (ANn), Cable o {A3H~l/(ne-1) D(_~gb)2/(ne-1) 
(Ace), and dislocation creep (Ae)equations, and ~ = IA~oAe] (9) 
the stress exponent used for dislocation creep 
(ne). The map is constructed following a simple 
three-step procedure. 

(1) From Equations 2 and 4, the boundary be- 
tween the Nabarro-Herring and Cable mechanisms 
is defined as 

a_ _ Aco (Dgb] (8) 
b Am-i \D1 ] 

where D g  b and DI are the values of the diffusion 
coefficients calculated for a temperature of 
1200 ~ C. Very little definitive information is avail- 
able on the rates of grain-boundary diffusion in 
ceramics, so that Dg b was calculated by taking 
Qgb = 0.6 Qa, where Qcb and Q1 are the activation 
energies for grain-boundary and lattice diffusion, 
respectively, and Do(gb)=Do(l), where Do is the 
value of the pre-exponential frequency factor in 
the diffusion relationship.~ Since Nabarro-Herring 
and Coble creep both exhibit the same dependence 
on stress ( n =  1), the Nabarro-Herring/Coble 
boundary is obtained by drawing a horizontal line 
through the value of d/b given by Equation 8 : this 
line is shown in Fig. 3. 2.2.3. Method o f  inserting contours o f  

(2) The Nabarro-Herring/Coble boundary ter- constant strain rate 
minates at a triple point where the three defer- Three steps are required in order to insert con- 

Sit  should be noted  tha t  there are invariably slight differences in the  values assumed for Dg b by  different  investigators. 
For example,  the  present  work  takes Qgb = 0.6 Q~, which is equivalent to Qgb = 157kJ  mo1-1 for O 2- diffusion,  
whereas  Stacker  and Ashby [5] assumed a value o f  Qgb = 173 kJ mol  -~ in the construct ion o f  Fig. 1: bo th  analyses 

assume tha t  D o(gb) = D o(~). 
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Equation 9, therefore, indicates the upper limit of 
normalized stress for the Nabarro-Herring/Coble 
boundary. 

(3) The slope of the boundary separating any 
two mechanisms is given by 

An 
slope -- (10) 

Ap 

where An and 2~9 are the differences in the ex- 
ponents for stress and inverse grain size, respect- 
ively, for the two mechanisms on either side of 
the line. The slopes of the Nabarro-Herring/dis- 
location creep and Cable/dislocation creep bound- 
aries are, therefore,--(no - 1)/2 and --(ne -- 1)/3, 
respectively: for n e = 3, these slopes are equivalent 
to --1 for the Nabarro-Herring/dislocation creep 
boundary and --2/3 for the CoNe/dislocation creep 
boundary. Lines having these slopes are drawn in 
Fig. 3 from the point on the Nabarro-Herring/ 
Coble boundary given by EquatiOn 9. 

The map is now complete for MgO at 1200 ~ C. 



tours of constant strain-rate. 
( t )  It is necessary to solve one of the con- 

stitutive equations at a point within one of the 
established fields. For example, Equation 5 may 
be expressed as 

a { ~ k T ]  u" 
= " o l )  

Since dislocation creep is independent of grain size, 
the position of the strain-rate contour correspond- 
ing to ~ = 10-a~ may be obtained by solving 
Equation 11 and drawing a vertical line within the 
dislocation creep field at the relevant value of a/G. 
This line is shown in Fig. 3. 

(2) The slope of the constant strain rate con- 
tour within any field is given by 

r/ 
slope = -- (12) 

P 

where n and p are the exponents of stress and in- 
verse grain size, respectively, for the two mech- 
anisms appropriate to the field. This is equivalent 
to slopes of �89 for Nabarro-Herring creep and ] for 
Coble creep. The contour for ~ = I0-I~ -I may, 
therefore, be continued into other fields by draw- 
ing lines having the appropriate slopes from the 
points of intersection at the boundaries. This con- 
struction is indicated in Fig. 3. 

(3) Additional contours may be added for other 
strain-rates, since an order of magnitude change in 

displaces the contour by a factor of 1/n when 
measured parallel to the stress axis. The contour 
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_ .4[  .51 

-= ) m 
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for e = 10-gsec -1 shown in Fig. 3 is, therefore, 
displaced by a factor of  line from the line for 
10-1~ within the field for dislocation creep. 
Using this procedure, it is, therefore, very easy to 
insert on to the map those constant strain-rate 
contours which are of maximum interest. The 
strain-rates of 10 -1~ and 10-gsec -1 were selected 
for illustrative purposes in this work because 
10-gsec -l, corresponding to a strain of slightly 
less than 0.01%/day, represents essentially a lower 
limit for laboratory experiments, whereas 10 -1~ 
sec -1, corresponding to a strain of ~ 3%/10 years, 
represents an upper limit for many structural 
design criteria. 

The final form of the deformation mechanism 
map is shown in Fig. 4. This is identical to the 
map illustrated schematically in Fig. 3, with the 
exception that the strain-rate contours are curved 
in the vicinity of  the boundaries between two 
adjacent fields. This curvature arises because the 
contours in Fig. 4 were calculated by computer, 
and therefore all mechanisms were considered at 
every point in grain size-stress space. In principle, 
the procedure of drawing straight lines up to the 
boundaries is an oversimplification, because it 
ignores the contributions from mechanisms in 
adjacent fields; in practice, however, this additional 
contribution is only significant in the immediate 
vicinity of the boundaries, and for most situations 
the procedure is acceptable.* 

Fig. 4 also indicates the range of stress and 
grain size used for the MgO creep data in Fig. 2: 
these data are identical to that recorded in Fig. 1. 

I 
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] J i ~ , , , , , I  I 
I0 -5 10 -4 I0 -3 10 -2 
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Figure 4 Deformation mechanism map for MgO at 1200 ~ C, 

*The maximum error introduced by drawing strain-rate contours as straight lines occurs at a triple point,  where the 
strain rate is underestimated by a factor o f  three: this is invariably smaller than the errors inherent in the constitutive 
equations used to construct  the map. 
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3. Deformation mechanism maps for other 
ceram ics 

3.1. Oxides and carbides 
It is apparent from Fig. 2 that the dislocation creep 
mechanism in A1203 and UC may also be represen- 
ted by a relationship of the form shown in Equation 
7. Deformation mechanism maps were, therefore, 
constructed for these two materials using the pro- 
cedure outlined in Section 2.2, with the exception 
that the constant strain-rate contours were calcu- 
lated by computer. 

The results are shown in Figs. 5 and 6 for 
A1203 at 1650 ~ C and UC at 1300 ~ C, respectively. 
These maps also indicate the location of the ex- 
perimental data in grain size-stress space,? and the 
positions of the constant strain-rate contours for 
10 -9 and lO-l~ -1. 

3 . 2 .  Alka l i  halides 
A recent analysis of creep behaviour in three 
alkali halides indicated that the stress exponent- 

in these materials was close to 5 [26]. This is 
confirmed by the data plotted in Fig. 7, using ex- 
perimental results reported for NaC1 [27], KC1 
[28], and LiF [29]. As before, all experiments 
were conducted in compression, the diffusion 
coefficient was put equal to the measured value 
for lattice diffusion of the slower-moving ion, and 
the shear modulus was estimated from Equation 6: 
the relevant values of D, Go, AG, and b are shown 
in Table I. 

These three sets of results are in excellent agree- 
ment over five orders of magnitude of normalized 
strain-rate, despite large differences in testing tem- 
perature (365 to 742 ~ C for NaC1, 600 ~ C for KC1, 
400 to 550~ for LiF) and grain size (~ 200 to 
3000gin for NaC1, in the range of 100 to 300/.tin 
for KC1, 160 to 3000/.tin for LiF). The results, 
therefore, suggest that the dislocation creep process 
for these alkali halides may be expressed by the 
relationship 

1~ ' ~ ! '~l ........ ' ' 

k .  ~ ~, IA,2o3:,65otl 
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i i  i i i  I 
~l ~ .~/  .~j Dislocation c r e e p  

IO~kNabarro-Herrino ~ / 
~/b ~ _S.-- - - ~ -  

IO . . . . . .  ~ . . . . . . . . . . .  " . . . . . . . . . .  Connon (1971) 

105~-- Cable 

I0 I I , , , , , , , , I  I 
10-7 10-6 10-5 10-4 iO-3 10-2 

o-/G 

Figure5 Deformation mechanism map for AI~O 3 at 1650 ~ C. 
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Figure 6 Defo rma t i on  mechanism map for  UC at 1300 ~ C. 

~In the compressive creep experiments on UC, the grain size of the material was not quoted: an examination of the 
photomicrographs [16] suggests d ~-- 160 +_ 15/~m. 
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Figure 7 Normalized creep rate, "ekT/DGb, versus normal- 
ized stress, a/G, for KC1, LiF, and NaC1. 

losDaGb [~  s 
= 3 x ~ ~ /  (13)* 

Using Equations 2, 4 and 13, deformation 
mechanism maps were constructed for NaC1 at 
600 ~ C, KC1 at 600 ~ C, and LiF at 500 ~ C: the 
results are shown in Figs. 8, 9 and 10, respectively, 
and these maps also indicate the location of  the 
experimental data used in the construction of  
Fig. 7. 

4. The superimposition of deformation 
mechanism maps 

Deformation mechanism maps may be super- 
imposed for different materials provided only 
three mechanisms are considered and the same set 

of  constitutive equations describes the deformation 
processes in all materials. For example, the defor- 
mation mechanism maps for MgO, A1203, and UC 
are identical in form, although the triple point 
where the three mechanisms are of  equal import- 
ance occurs at a different position on each map 
because there has been no normalization for tem- 
perature. Similarly, the maps for NaC1, KC1, and 
LiF are also similar in appearance. 

A set o f  similar maps may be superimposed by 
compensating for differences in temperature: 
reference to Fig. 3 indicates that this is achieved 
by plotting (d/b)(Dl[Dgb) versus (o/G)(Dgb/ 
D1)2/(nc-1). 

An example of  this type of  map is shown in 
Fig. 11 for the two oxides and UC. The position 
of  the triple point is defined on the normalized 
grain size axis by 

Ace _ 2.385 (14) 
ANn 

and on the normalized stress axis by 

( A~,II_ I t 1/(no-l) 
A~oAe] = 1.28. (15) 

The locations of  the experimental data for 
these three materials are also indicated on the map. 

5. Discussion 
Deformation mechanism maps present a simple 
and highly visual method of  displaying information 
on the mechanical properties o f  materials. It seems 
likely that this type of  mapping will become 
increasingly important as more information is 
obtained on the nature of  the constitutive 
equations for different deformation mechanisms 
under specific experimental conditions: indeed, 
deformation mechanism maps have already been 
likened to phase diagrams [33].  

Of the two types o f  maps discussed in Section 
2, the maps at constant temperature have the major 
advantage of  considerable simplicity in construc- 
tion. Whereas maps at constant grain size are 
constructed by computer, by solving the relevant 
constitutive equations at a very large number 
(~  6000) of  points in stress-temperature space, 
maps at constant temperature may be constructed 

SThe reason for the larger value of n in the alkali halides is not known at the present time. It has been suggested that 
the ratio of the anion to cation radius may be important [30], such that ratios greater than 2 give n ~ 3 and ratios less 
than 2 give n ~ 5, or that it may arise due to differences in the nature of the atomic bonds [31]. An alternative possi- 
bility is that n ~ 5 behaviour represents a dislocation climb process wliereas n ~ 3 behaviour arises when dislocation 
glide is rate-controlling, in a manner analogous to the climb and glide observed in metallic solid solution alloys [32]. 
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Figure 11 Method of superimposing a set of  similar deformation mechanism maps, illustrated for A]~O3, MgO, and UC. 

very easily, even when more than three mech- 
anisms are operative, using the procedure depicted 
schematically in Fig. 3 and outlined in detail in 
Section 2.2. 

There are two major advantages of constructing 
maps at constant temperature. Firstly, provided the 
individual mechanisms operate independently so 
that the strain-rates are additive, the various 
fields are separated by straight rather than curved 
boundaries.* Secondly, engineering applications 
usually relate to a fairly narrow range of tem- 
perature, so that grain size and stress are often the 
permissible variables: the maps at constant tem- 
perature are, therefore, ideal for many practical 
situations. 

It is important to emphasize two limitations 
associated with both types of deformation mech- 
anism maps: (1) the accuracy of the map is limited 
by the accuracy of the constitutive equations, and 
this is of  particular importance with ceramic ma- 
terials because of the uncertainties in the values of  
the diffusion coefficients; (2)some mechanisms 
are probably excluded from the present maps, 
even though they may be of major importance 
under certain experimental conditions, because of 
the lack of information on the relevant consti- 
tutive equations. Provided these limitations are 
not overlooked, deformation mechanism maps 
present a visual summary of available mechanical 
data and, used judiciously, are valuable in the pre- 
diction of creep behaviour. 

6. Summary and conclusions 
(1) Deformation mechanism maps may be con- 

temperature. 

(2) A simple method is presented for cons- 
tructing maps at constant temperature, and for 
inserting constant strain-rate contours. 

(3) Examples of maps are presented for two 
oxides, a carbide, and three alkali halides. 

(4) A method is described for superimposing a 
set of similar deformation mechanism maps. 
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